Congestion-Aware Routing

SENSOR network deployments may include hundreds or thousands of nodes. Since deploying such large-scale networks has a high cost, it is increasingly likely that sensors will be shared by multiple applications and gather various types of data: temperature, the presence of lethal chemical gases, audio and/or video feeds, etc. Therefore, data generated in a sensor network may not all be equally important. With large deployment sizes, congestion becomes an important problem. Congestion may lead to indiscriminate dropping of data (i.e., high-priority (HP) packets may be dropped while low-priority (LP) packets are delivered). It also results in an increase in energy consumption to route packets that will be dropped downstream as links become saturated. As nodes along optimal routes are depleted of energy, only nonoptimal routes remain, further compounding the problem. To ensure that data with higher priority is received in the presence of congestion due to LP packets, differentiated service must be provided. In this work, we are interested in congestion that results from excessive competition for the wireless medium. Existing schemes detect congestion while considering all data to be equally important. We characterize congestion as the degradation of service to HP data due to competing LP traffic. In this case, congestion detection is reduced to identifying competition for medium access between HP and LP traffic. Congestion becomes worse when a particular area is generating data at a high rate. This may occur in deployments in which sensors in one area of interest are requested to gather and transmit data at a higher rate than others (similar to bursty converge cast [25]). In this case, routing dynamics can lead to congestion on specific paths. These paths are usually close to each other, which lead to an entire zone in the network facing congestion. We refer to this zone, essentially an extended hotspot, as the congestion zone (Conzone). In this paper, we examine data delivery issues in the presence of congestion. We propose the use of data prioritization and a differentiated routing protocol and/or a prioritized medium access scheme to mitigate its effects on HP traffic. We strive for a solution that accommodates both LP and HP traffic when the network is static or near static and enables fast recovery of LP traffic in networks with mobile HP data sources. Our solution uses a differentiated routing approach to effectively separate HP traffic from LP traffic in the sensor network. HP traffic has exclusive use of nodes along its shortest path to the sink, whereas LP traffic is routed over un-congested nodes in the network but may traverse longer paths. Our contributions in this work are listed as follows:

Design of Congestion-Aware Routing (CAR):
 CAR   is a network-layer solution to provide differentiated service in congested sensor networks. CAR also prevents severe degradation of service to LP data by utilizing un congested parts of the network.


Modules:
1 Network Formation
2 Conzone Discovery

3 Routing Data via Differentiated paths